• Doug Joachim

Anti-GMO Rhetoric is Junk Science

Updated: Jun 4

GMO rhetoric junk science
“Science is the pursuit and application of knowledge and understanding of the natural and social world following a systematic methodology based on evidence.”

I used to believe GMO’s were a freighting Pandora’s Box; a travesty on nature we could not possibly understand nor contain. I was intent on keeping the “Frankenfood” away from my family.  After months of careful consideration and research, I have changed my mind. The scientific evidence pointing toward the safety of GMO’s is undeniable.

FACT 1:  Over the last 30 years science has objectively shown GMO’s to be generally regarded as safe for human consumption. There is a stronger scientific consensus on the safety of GMOs than there is about the reality of climate change!

FACT 2:  There is no credible scientific evidence showing GMO’s cause any harm to the humans who consume them.

FACT 3:  GM technology has and is currently being used to develop and manufacture life-sustaining medicine.

FACT 4:  Since 1994 there have been over 1700 peer reviewed safety studies on GMO crops and not one of them found them to be less risky than conventional crops.


Why are GMO’s being used at all? In traditional breeding, “plants often exchange large, unregulated chunks of their genomes. This can lead to both useful and unwanted traits in the offspring. Sometimes these unwanted traits can be unsafe.” GMO techniques are exacting and allow new traits to be surgically introduced without complications from extra genes, minimizing the inexact nature of multi-generational cross breeding.  According to the journal Nature: “Some benefits of genetic engineering in agriculture are increased crop yields, reduced costs for food or drug production, reduced need for pesticides, enhanced nutrient composition and food quality, resistance to pests and disease, greater food security, and medical benefits to the world’s growing population.”

GMO’s are a new scary technology with unforeseen consequences, right? Humans have been manipulating crops for thousands of years through selective breeding.  Every plant and most of the animals we eat today has been changed by man. One hundred years ago it was next to near impossible to find a sweet apple…now because of cross-breeding (genetic modification) we are hard-pressed to find an apple that isn’t sweet.  Virtually all the food crops we eat have been genetically modified in one way or another.  Radiation or mutation breeding wherein seeds are exposed to chemicals or ionized radiation, producing random (and many times unpredictable) mutations is considered “conventional”. Unlike GMO’s, this process is not regulated. Furthermore, traditional breeding is nowhere near as exact as the GMO process.  “With GMOs, we know the genetic information we are using, we know where it goes in the genome, and we can see if it is near an allergen or a toxin or if it is going to turn [another gene] off,” says Peggy G. Lemaux, a plant biologist at the University of California, Berkeley. “That is not true when you cross widely different varieties in traditional breeding.” Everyone’s favorite astrophysicist Neil deGrasse Tyson recently stated:

I’m amazed how much rejection genetically modified foods are receiving from the public. It smacks of the fear factor that exists at every new emergent science, where people don’t fully understand it or don’t fully know or embrace its consequences, and so, therefore, reject it.” Journal of Agricultural and Food Chemistry published a literature review covering 20 years of safety studies and found “overwhelming evidence” that using biotechnology to genetically modify crops “is less disruptive of crop composition compared with traditional breeding, which itself has a tremendous history of safety.”

Doesn’t the European Union ban the use of GMO’s? No. The EU requires all food that has .9% or more of GMOs to be labeled.  Intense sociopolitical factors and economic concerns have informed this current policy.  It is a way of protecting local European producers from cheap imports while still keeping within the letter of various trade agreements they are party to. “In order to ensure that Europe is immune to outside influences potentially implicating its food security, the EU must also ensure that Europe is not dependent on outside countries for seeds. Since the largest GMO providers, such as Monsanto, Syngenta, and DuPont, are international corporations from the United States and Switzerland, the adoption of GMOs presents a perceived risk to European food security by relying on foreign multinational corporations for input materials.” That being said, The European Commission in 2010 stated: “The main conclusion to be drawn from the efforts of more than 130 research projects, covering a period of more than 25 years of research, and involving more than 500 independent research groups, is that biotechnology, and in particular GMOs, are not per se riskier than e.g. conventional plant breeding technologies.”

Why doesn’t the U.S. have mandatory labels for GMO’s? All 100% certified-organic products do not contain any GMOs (although there are a few small loopholes).  Furthermore, there are thousands of other products certified “Non-GMO” by private labeling systems such as the “Non-GMO Project.” Barring these two scenarios, U.S. consumers should assume that virtually all unlabeled food products contain engineered ingredients.  The USDA requires labels for nutritional content, ingredients, proven allergens, potentially dangerous contaminants, and contained pathogens.  The rest, like the country of origin or Kosher, is voluntary. Government mandated food labeling should be undertaken in the interest of public health, not to serve an ideological agenda. A GMO label will act as a skull and crossbones to the scientifically illiterate and increase fear-mongering.  Simply put, it will promote junk science and hysteria. GMO labels may not be directly harmful but they might indirectly encourage harmful pseudoscience beliefs and practices, like homeopathy, intelligent design, faith healing etc. UC Berkeley’s David Zilberman “worried that labeling laws might create a stigma effect” that will hinder future research into using GM foods to improve nutrition or help ameliorate the effects of climate change. A Cornell study concluded mandatory labeling will raise food costs across the board. We all have a choice to stay away from GMO foods, it’s called 100% Organic.

Science has been wrong before, why should we trust science now? This is a fallacious argument favored by pseudoscience and conspiracy theorists. It is an example of a ‘continuum fallacy‘.  Science is probabilistic (not absolutist) based on the evidence. Many scientific theories are neither right nor wrong, but merely provisional truths that describe the world as we know it and make predictions based on reproducible evidence. The same degree of “wrongness” is on a continuum but not equal.  “Contrary to what many believe, neither rational inquirers nor scientists claim to know the absolute truth on matters. They claim to hold provisional truths: answers that are the best explanation for things at the present time.” Science has proved the most reliable method we know of for evaluating claims and figuring out how the universe works. Just because science is not perfect, should it not be trusted? There are very few laws in science but numerous accepted theories (like the theory of relativity) that we base entire practical systems on (see aeronautical physics/sending rockets into space).  Ignoring the overwhelming scientific evidence demonstrating the safety of GMO’s is tantamount to believing that thunder is the sounds of gods bowling.

What are the advantages of GMO crops?

  1. Pest & Weed Resistance Nobody wants to eat food treated with potentially harmful pesticides and herbicides (Roundup Ready Soy). Not to mention the run-off of agricultural wastes poisoning the ground water and the surrounding environment.  Growing GM foods can help eliminate the application of chemical pesticides and reduce the cost of bringing a crop to market….keeping prices down for the consumer.

  2. Disease Resistance Many crops and farmers’ livelihoods are destroyed by disease. GM plants have been created to fight off specific diseases and save crops from total failure.

  3. Tolerance to Cold Temperatures and Drought Conditions   Crops can be genetically modified to be drought and cold-tolerant, or less reliant on fertilizer, opening up new areas to be farmed and leading to increased productivity.  This is especially pressing issue, because of climate change. 

  4. Higher Yields and Quality By 2050 there will be about 30% more people on this planet.  We will have to find a way to produce more food on less acreage.  Due to engineered pest, disease, weed, drought and cold resistance, GM crops show lots of promise in this area.

  5. Prevention of Some Diseases, Malnutrition and Starvation–  Golden Rice has been modified to contain beta-carotene (vitamin A), which millions of people in over 100 countries lack – causing widespread blindness and malnutrition and juvenile death.  Other crops with engineered vitamins/nutrients are in the pipeline.

There are many environmental issues that need activism. Protesting GMO’s isn’t one of them. I get it; we are all skeptical of big-Agra and extra-national companies like Monsanto.  Large companies have routinely lied to us and continue to do so in an effort to keep profits up. Don’t trust the companies, trust science. Science has proven GMO’s to be safe and in many cases beneficial, improving and possibly saving the lives of many people.  It seems reasonable they should be offered for public consumption. No one seems to have objections to GM organisms that provide the world with medicines like insulin, hormones for cancer treatments, antibiotics, etc. Yes, it may turn out that in some rare cases GMOs will cause harm (just as aspirin, spinach, and swimming do ….but we don’t ban these things).  Don’t be paralyzed by the uncountable unknown unknowns or you might as well don your tin-foil hat and live in your parent’s basement. For the best unbiased scientific reporting about GMOs check out the multi-part (nuanced) series written by Nathanael Johnson in: Grist. Partial

Reference list of GMO safety studies:

  1. Álvarez-Alfageme F, von Burg S, Romeis J. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions. PLoS One. 2011;6(7):e22690. doi: 10.1371/journal.pone.0022690. Epub 2011 Jul 28. PubMed PMID: 21829479; PubMed Central PMCID: PMC3145666. Impact Factor: 3.730.

  2. Anilkumar B, Reddy AG, Kalakumar B, Rani MU, Anjaneyulu Y, Raghunandan T, Reddy YR, Jyothi K, Gopi KS. Sero-biochemical Studies in Sheep Fed with Bt Cotton Plants. Toxicol Int. 2010 Jul;17(2):99-101. doi: 10.4103/0971-6580.72680. PubMed PMID: 21170255; PubMed Central PMCID: PMC2997465. Impact Factor: 0.510.

  3. Atkinson HJ, Johnston KA, Robbins M. Prima facie evidence that a phytocystatin for transgenic plant resistance to nematodes is not a toxic risk in the human diet. J Nutr. 2004 Feb;134(2):431-4. PubMed PMID: 14747684. Impact factor: 3.302

  4. Aulrich K, Böhme H, Daenicke R, Halle I, Flachowsky G. Genetically modified feeds in animal nutrition. 1st communication: Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition. Arch Tierernahr. 2001;54(3):183-95. PubMed PMID: 11865766.

  5. Batista R, Saibo N, Lourenço T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3640-5. doi: 10.1073/pnas.0707881105. Epub 2008 Feb 26. PubMed PMID: 18303117; PubMed Central PMCID: PMC2265136. Impact factor: 9.681.

  6. Bakan B, Melcion D, Richard-Molard D, Cahagnier B. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J Agric Food Chem. 2002 Feb 13;50(4):728-31. PubMed PMID: 11829636. Impact factor: 2.906.

  7. Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR. Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J. 2006 Jul;4(4):369-80. PubMed PMID: 17177803. Impact factor: 5.442

  8. Brake DG, Thaler R, Evenson DP. Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry. J Agric Food Chem. 2004 Apr 7;52(7):2097-102. PubMed PMID: 15053558. Impact factor: 2.906

  9. Brake DG, Evenson DP. A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chem Toxicol. 2004 Jan;42(1):29-36. PubMed PMID: 14630127. Impact factor: 3.010

  10. Böhme H, Aulrich K, Daenicke R, Flachowsky G. Genetically modified feeds in animal nutrition. 2nd communication: glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs. Arch Tierernahr. 2001;54(3):197-207. PubMed PMID: 11865767.

  11. Böhme H, Rudloff E, Schöne F, Schumann W, Hüther L, Flachowsky G. Nutritional assessment of genetically modified rapeseed synthesizing high amounts of mid-chain fatty acids including production responses of growing-finishing pigs. Arch Anim Nutr. 2007 Aug;61(4):308-16. PubMed PMID: 17760308. Impact factor: 1.095 (fairly low, but a new journal)

  12. Borejsza-Wysocka E, Norelli JL, Aldwinckle HS, Malnoy M. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period. BMC Biotechnol. 2010 Jun 3;10:41. doi: 10.1186/1472-6750-10-41. PubMed PMID: 20525262; PubMed Central PMCID: PMC2910661. Impact Impact: 2.165.

  13. Brown NM, Setchell KD. Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest. 2001 May;81(5):735-47. PubMed PMID: 11351045. Impact Factor: 3.961

  14. Bub A, Möseneder J, Wenzel G, Rechkemmer G, Briviba K. Zeaxanthin is bioavailable from genetically modified zeaxanthin-rich potatoes. Eur J Nutr. 2008 Mar;47(2):99-103. doi: 10.1007/s00394-008-0702-2. Epub 2008 Mar 4. PubMed PMID: 18320254. Impact factor: 3.127.

  15. Cao S, Xu W, Luo Y, He X, Yuan Y, Ran W, Liang L, Huang K. Metabonomics study of transgenic Bacillus thuringiensis rice (T2A-1) meal in a 90-day dietary toxicity study in rats. Mol Biosyst. 2011 Jul;7(7):2304-10. doi: 10.1039/c1mb05076a. Epub 2011 May 19. PubMed PMID: 21594293. Impact Factor: 3.350.

  16. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J.Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14458-62. Epub 2005 Sep 26. PubMed PMID: 16186495; PubMed Central PMCID: PMC1242293. Impact factor: 9.681.

  17. Cattaneo MG, Yafuso C, Schmidt C, Huang CY, Rahman M, Olson C, Ellers-Kirk C, Orr BJ, Marsh SE, Antilla L, Dutilleul P, Carrière Y.Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7571-6. Epub 2006 May 4. PubMed PMID: 16675554; PubMed Central PMCID: PMC1457091. Impact factor: 9.681.

  18. Chambers PA, Duggan PS, Heritage J, Forbes JM. The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J Antimicrob Chemother. 2002 Jan;49(1):161-4. PubMed PMID: 11751781. Impact factor: 5.338

  19. Cheeke TE, Rosenstiel TN, Cruzan MB. Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. Am J Bot. 2012 Apr;99(4):700-7. doi: 10.3732/ajb.1100529. Epub 2012 Apr 2. PubMed PMID: 22473978. Impact factor: 2.586

  20. Chen ZL, Gu H, Li Y, Su Y, Wu P, Jiang Z, Ming X, Tian J, Pan N, Qu LJ. Safety assessment for genetically modified sweet pepper and tomato. Toxicology. 2003 Jun 30;188(2-3):297-307. PubMed PMID: 12767699. Impact Factor: 3.763

  21. Cheng KC, Beaulieu J, Iquira E, Belzile FJ, Fortin MG, Strömvik MV. Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. J Agric Food Chem. 2008 May 14;56(9):3057-67. doi: 10.1021/jf073505i. Epub 2008 Apr 23. PubMed PMID: 18433101. Impact factor 2.906.

  22. Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y. Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci. 2003 Oct;81(10):2546-51. PubMed PMID: 14552382. Impact Factor: 2.093.

  23. Chowdhury EH, Mikami O, Murata H, Sultana P, Shimada N, Yoshioka M, Guruge KS, Yamamoto S, Miyazaki S, Yamanaka N, Nakajima Y. Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11. J Food Prot. 2004 Feb;67(2):365-70. PubMed PMID: 14968971. Impact Factor: 1.832.

  24. Chowdhury EH, Shimada N, Murata H, Mikami O, Sultana P, Miyazaki S, Yoshioka M, Yamanaka N, Hirai N, Nakajima Y. Detection of Cry1Ab protein in gastrointestinal contents but not visceral organs of genetically modified Bt11-fed calves. Vet Hum Toxicol. 2003 Mar;45(2):72-5. PubMed PMID: 12678290. Impact Factor: 0.66 (journal was discontinued in 2004, which means the impact factor drops every year since closing).

  25. Chrenková M, Sommer A, Ceresnáková Z, Nitrayová S, Prostredná M. Nutritional evaluation of genetically modified maize corn performed on rats. Arch Tierernahr. 2002 Jun;56(3):229-35. PubMed PMID: 12391907.

  26. Cleveland TE, Dowd PF, Desjardins AE, Bhatnagar D, Cotty PJ. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag Sci. 2003 Jun-Jul;59(6-7):629-42. Review. PubMed PMID: 12846313. Impact Factor: 2.594.

  27. Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M. Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices. Plant Mol Biol. 2010 Jun;73(3):349-62. doi: 10.1007/s11103-010-9624-5. Epub 2010 Mar 27. PubMed PMID: 20349115. Impact Factor: 3.518

  28. Coll A, Nadal A, Collado R, Capellades G, Messeguer J, Melé E, Palaudelmàs M, Pla M. Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines. Transgenic Res. 2009 Oct;18(5):801-8. doi: 10.1007/s11248-009-9266-z. Epub 2009 Apr 26. PubMed PMID: 19396622. Impact factor: 2.906.

  29. Dai PL, Zhou W, Zhang J, Cui HJ, Wang Q, Jiang WY, Sun JH, Wu YY, Zhou T. Field assessment of Bt cry1Ah corn pollen on the survival, development and behavior of Apis mellifera ligustica. Ecotoxicol Environ Saf. 2012 May;79:232-7. doi: 10.1016/j.ecoenv.2012.01.005. Epub 2012 Feb 23. PubMed PMID: 22364780. Impact Factor: 2.203.

  30. Defernez M, Gunning YM, Parr AJ, Shepherd LV, Davies HV, Colquhoun IJ. NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. J Agric Food Chem. 2004 Oct 6;52(20):6075-85. PubMed PMID: 15453669. Impact Factor: 2.906.

  31. Di Carli M, Villani ME, Renzone G, Nardi L, Pasquo A, Franconi R, Scaloni A, Benvenuto E, Desiderio A. Leaf proteome analysis of transgenic plants expressing antiviral antibodies. J Proteome Res. 2009 Feb;8(2):838-48. doi: 10.1021/pr800359d. PubMed PMID: 19099506. Impact factor: 5.056

  32. Domingo JL, Giné Bordonaba J. A literature review on the safety assessment of genetically modified plants. Environ Int. 2011 May;37(4):734-42. doi: 10.1016/j.envint.2011.01.003. Epub 2011 Feb 5. Review. PubMed PMID: 21296423. Impact Factor: 6.248

  33. Dowd PF. Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitations. J Econ Entomol. 2000 Dec;93(6):1669-79. PubMed PMID: 11142297. Impact factor: 1.600.

  34. Dowd PF. Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J Econ Entomol. 2001 Oct;94(5):1067-74. PubMed PMID: 11681667. Impact factor: 1.600.

  35. Dubouzet JG, Ishihara A, Matsuda F, Miyagawa H, Iwata H, Wakasa K. Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J Exp Bot. 2007;58(12):3309-21. Epub 2007 Sep 4. PubMed PMID: 17804429. Impact factor: 5.242.

  36. Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One. 2008 Jan 9;3(1):e1415. doi: 10.1371/journal.pone.0001415. PubMed PMID: 18183296; PubMed Central PMCID: PMC2169303. Impact Factor: 3.730.

  37. Duc C, Nentwig W, Lindfeld A. No adverse effect of genetically modified antifungal wheat on decomposition dynamics and the soil fauna community–a field study. PLoS One. 2011;6(10):e25014. doi: 10.1371/journal.pone.0025014. Epub 2011 Oct 17. PubMed PMID: 22043279; PubMed Central PMCID: PMC3197184. Impact Factor: 3.730.

  38. Duggan PS, Chambers PA, Heritage J, Forbes JM. Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent. FEMS Microbiol Lett. 2000 Oct 1;191(1):71-7. PubMed PMID: 11004402. Impact factor: 2.049.

  39. Eizaguirre M, Albajes R, López C, Eras J, Lumbierres B, Pons X. Six years after the commercial introduction of Bt maize in Spain: field evaluation, impact and future prospects. Transgenic Res. 2006 Feb;15(1):1-12. Review. PubMed PMID: 16475005. Impact factor: 2.609.

  40. Enot DP, Beckmann M, Overy D, Draper J. Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14865-70. Epub 2006 Sep 21. PubMed PMID: 16990432; PubMed Central PMCID: PMC1595442. Impact factor: 9.681.

  41. Ewen SW, Pusztai A. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine.Lancet. 1999 Oct 16;354(9187):1353-4. PubMed PMID: 10533866. Impact Factor: 39.060 (one of the highest impact factor medical journals)

  42. Finamore A, Roselli M, Britti S, Monastra G, Ambra R, Turrini A, Mengheri E. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J Agric Food Chem. 2008 Dec 10;56(23):11533-9. doi: 10.1021/jf802059w. PubMed PMID: 19007233. Impact Factor: 2.906

  43. Flachowsky G, Halle I, Aulrich K. Long term feeding of Bt-corn–a ten-generation study with quails. Arch Anim Nutr. 2005 Dec;59(6):449-51. PubMed PMID: 16429830. Impact Factor: 1.095.

  44. Fonseca C, Planchon S, Renaut J, Oliveira MM, Batista R. Characterization of maize allergens – MON810 vs. its non-transgenic counterpart. J Proteomics. 2012 Apr 3;75(7):2027-37. doi: 10.1016/j.jprot.2012.01.005. Epub 2012 Jan 13. PubMed PMID: 22270010. Impact Factor: 4.088.

  45. Gao MQ, Hou SP, Pu DQ, Shi M, Ye GY, Chen XX. Multi-generation effects of Bt rice on Anagrus nilaparvatae, a parasitoid of the nontarget pest Nilapavarta lugens. Environ Entomol. 2010 Dec;39(6):2039-44. doi: 10.1603/EN10035. PubMed PMID: 22182572. Impact Factor: 1.314.

  46. Gizzarelli F, Corinti S, Barletta B, Iacovacci P, Brunetto B, Butteroni C, Afferni C, Onori R, Miraglia M, Panzini G, Di Felice G, Tinghino R.Evaluation of allergenicity of genetically modified soybean protein extract in a murine model of oral allergen-specific sensitization. Clin Exp Allergy. 2006 Feb;36(2):238-48. PubMed PMID: 16433863. Impact Factor: 4.789

  47. Gregersen PL, Brinch-Pedersen H, Holm PB. A microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Transgenic Res. 2005 Dec;14(6):887-905. PubMed PMID: 16315094. Impact factor: 2.609.

  48. Gruber H, Paul V, Meyer HH, Müller M. Determination of insecticidal Cry1Ab protein in soil collected in the final growing seasons of a nine-year field trial of Bt-maize MON810. Transgenic Res. 2012 Feb;21(1):77-88. doi: 10.1007/s11248-011-9509-7. Epub 2011 Apr 16. PubMed PMID: 21499757. Impact factor: 2.609.

  49. Gruber H, Paul V, Guertler P, Spiekers H, Tichopad A, Meyer HH, Muller M. Fate of Cry1Ab protein in agricultural systems under slurry management of cows fed genetically modified maize (Zea mays L.) MON810: a quantitative assessment. J Agric Food Chem. 2011 Jul 13;59(13):7135-44. doi: 10.1021/jf200854n. Epub 2011 Jun 8. PubMed PMID: 21604675. Impact Factor: 2.906.

  50. Huang F, Andow DA, Buschman LL.. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomologia Experimentalis et Applicata 2011; 140:1–16. DOI: 10.1111/j.1570-7458.2011.01138.x. Impact Factor: 1.669.

  51. Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB. A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol. 2004 Dec;22(12):1601-6. PubMed PMID: 15583675. Impact Factor: 32.438

  52. Jia S, Wang F, Shi L, Yuan Q, Liu W, Liao Y, Li S, Jin W, Peng H. Transgene flow to hybrid rice and its male-sterile lines. Transgenic Res. 2007 Aug;16(4):491-501. Epub 2007 Apr 19. PubMed PMID: 17443417. Impact Factor: 2.609

  53. Kiliç A, Akay MT. A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food Chem Toxicol. 2008 Mar;46(3):1164-70. doi: 10.1016/j.fct.2007.11.016. Epub 2007 Dec 5. PubMed PMID: 18191319. Impact Factor: 3.010

  54. Kleter GA, Peijnenburg AA, Aarts HJ. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol. 2005;2005(4):326-52. PubMed PMID: 16489267; PubMed Central PMCID: PMC1364539. Impact Factor: 2.880

  55. Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felsot AS, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unsworth J, Wauchope RD, Wong SS. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci. 2007 Nov;63(11):1107-15. Review. PubMed PMID: 17880042. Impact Factor: 2.594

  56. Kleter GA, Peijnenburg AA. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens. BMC Struct Biol. 2002 Dec 12;2:8. Epub 2002 Dec 12. PubMed PMID: 12477382; PubMed Central PMCID: PMC139984. Impact Factor: 2.099 (an extraordinarily high Impact Factor for a 2 year old journal).

  57. Knudsen I, Poulsen M. Comparative safety testing of genetically modified foods in a 90-day rat feeding study design allowing the distinction between primary and secondary effects of the new genetic event. Regul Toxicol Pharmacol. 2007 Oct;49(1):53-62. PubMed PMID: 17719159. Impact Factor: 2.132

  58. Kuiper HA, Noteborn HP, Peijnenburg AA. Adequacy of methods for testing the safety of genetically modified foods. Lancet. 1999 Oct 16;354(9187):1315-6. PubMed PMID: 10533854. Impact Factor: 39.060

  59. Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K.Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.PLoS One. 2011 Feb 16;6(2):e16989. doi: 10.1371/journal.pone.0016989. PubMed PMID: 21359231; PubMed Central PMCID: PMC3040210. Impact Factor: 3.710.

  60. Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem. 2003 Apr 23;51(9):2438-46. PubMed PMID: 12696918. Impact Factor: 2.906.

  61. Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agric Food Chem. 2003 Apr 23;51(9):2447-56. Erratum in: J Agric Food Chem. 2004 May 19;52(10):3210. PubMed PMID: 12696919. Impact Factor: 2.906.

  62. Lehesranta SJ, Davies HV, Shepherd LV, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Kärenlampi SO.Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol. 2005 Jul;138(3):1690-9. Epub 2005 Jun 10. PubMed PMID: 15951487; PubMed Central PMCID: PMC1176438. Impact Factor: 6.555

  63. Li X, Huang K, He X, Zhu B, Liang Z, Li H, Luo Y. Comparison of nutritional quality between Chinese indica rice with sck and cry1Ac genes and its nontransgenic counterpart. J Food Sci. 2007 Aug;72(6):S420-4. PubMed PMID: 17995700. Impact Factor 1.775

  64. Lutz B, Wiedemann S, Einspanier R, Mayer J, Albrecht C. Degradation of Cry1Ab protein from genetically modified maize in the bovine gastrointestinal tract. J Agric Food Chem. 2005 Mar 9;53(5):1453-6. PubMed PMID: 15740023. Impact Factor: 2.906.

  65. Malatesta M, Boraldi F, Annovi G, Baldelli B, Battistelli S, Biggiogera M, Quaglino D. A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing. Histochem Cell Biol. 2008 Nov;130(5):967-77. doi: 10.1007/s00418-008-0476-x. Epub 2008 Jul 22. PubMed PMID: 18648843. Impact Factor: 2.613

  66. Malatesta M, Tiberi C, Baldelli B, Battistelli S, Manuali E, Biggiogera M. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean. Eur J Histochem. 2005 Jul-Sep;49(3):237-42. PubMed PMID: 16216809. Impact Factor: 2.412.

  67. Marvier M, McCreedy C, Regetz J, Kareiva P. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science. 2007 Jun 8;316(5830):1475-7. PubMed PMID: 17556584. Impact Factor: 31.027.

  68. McCallum EJ, Cunningham JP, Lücker J, Zalucki MP, De Voss JJ, Botella JR. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J Exp Biol. 2011 Nov 1;214(Pt 21):3672-7. doi: 10.1242/jeb.059923. PubMed PMID: 21993797. Impact Factor: 3.236.

  69. Mohanta RK, Singhal KK, Tyagi AK, Rajput YS, Prasad S. Nutritional evaluation of transgenic cottonseed in the ration of lactating dairy cows. Trop Anim Health Prod. 2010 Mar;42(3):431-8. doi: 10.1007/s11250-009-9439-z. Epub 2009 Aug 24. PubMed PMID: 19701795. Impact Factor: 1.09.

  70. Momma K, Hashimoto W, Yoon HJ, Ozawa S, Fukuda Y, Kawai S, Takaiwa F, Utsumi S, Murata K. Safety assessment of rice genetically modified with soybean glycinin by feeding studies on rats. Biosci Biotechnol Biochem. 2000 Sep;64(9):1881-6. PubMed PMID: 11055391. Impact Factor: 1.269

  71. Montero M, Coll A, Nadal A, Messeguer J, Pla M. Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene. Plant Biotechnol J. 2011 Aug;9(6):693-702. doi: 10.1111/j.1467-7652.2010.00572.x. Epub 2010 Oct 29. PubMed PMID: 21040388. Impact Factor: 6.279

  72. Nasir KH, Takahashi Y, Ito A, Saitoh H, Matsumura H, Kanzaki H, Shimizu T, Ito M, Fujisawa S, Sharma PC, Ohme-Takagi M, Kamoun S, Terauchi R. High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J. 2005 Aug;43(4):491-505. PubMed PMID: 16098104. Impact Factor: 6.582.

  73. Olson DM, Ruberson JR, Zeilinger AR, Andow DA. Colonization preference of Euschistus servus and Nezara viridula in transgenic cotton varieties, peanut, and soybean. Entomologia Experimentalis et Applicata 2011;139: 161–169. DOI: 10.1111/j.1570-7458.2011.01116.x. Impact Factor: 1.669.

  74. Paul V, Guertler P, Wiedemann S, Meyer HH. Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion. Transgenic Res. 2010 Aug;19(4):683-9. doi: 10.1007/s11248-009-9339-z. Epub 2009 Nov 4. PubMed PMID: 19888668; PubMed Central PMCID: PMC2902738. Impact Factor: 2.609.

  75. Peterson RK, Shama LM. A comparative risk assessment of genetically engineered, mutagenic, and conventional wheat production systems. Transgenic Res. 2005 Dec;14(6):859-75. PubMed PMID: 16315092.  Impact Factor: 2.609

  76. Phipps RH, Deaville ER, Maddison BC. Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. J Dairy Sci. 2003 Dec;86(12):4070-8. PubMed PMID: 14740846. Impact Factor: 2.566

  77. Powell M, Wheatley AO, Omoruyi F, Asemota HN, Williams NP, Tennant PF. Comparative effects of dietary administered transgenic and conventional papaya on selected intestinal parameters in rat models. Transgenic Res. 2010 Jun;19(3):511-8. doi: 10.1007/s11248-009-9317-5. Epub 2009 Aug 19. PubMed PMID: 19690973. Impact Factor: 2.609.

  78. Qaim M. Benefits of genetically modified crops for the poor: household income, nutrition, and health. N Biotechnol. 2010 Nov 30;27(5):552-7. doi: 10.1016/j.nbt.2010.07.009. Epub 2010 Jul 17. Review. PubMed PMID: 20643233. Impact Factor: 2.338.

  79. Ramessar K, Peremarti A, Gómez-Galera S, Naqvi S, Moralejo M, Muñoz P, Capell T, Christou P. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 2007 Jun;16(3):261-80. Epub 2007 Apr 14. Review. PubMed PMID: 17436060. Impact Factor: 2.609

  80. Reuter T, Aulrich K, Berk A, Flachowsky G. Investigations on genetically modified maize (Bt-maize) in pig nutrition: chemical composition and nutritional evaluation. Arch Tierernahr. 2002 Feb;56(1):23-31. PubMed PMID: 12389219.

  81. Rhee GS, Cho DH, Won YH, Seok JH, Kim SS, Kwack SJ, Lee RD, Chae SY, Kim JW, Lee BM, Park KL, Choi KS. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats. J Toxicol Environ Health A. 2005 Dec 10;68(23-24):2263-76. PubMed PMID: 16326439. Impact Factor: 1.733.

  82. Rose R, Dively GP. Effects of insecticide-treated and Lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Environ Entomol. 2007 Oct;36(5):1254-68. PubMed PMID: 18284751. Impact Factor: 1.314.

  83. Rosati A, Bogani P, Santarlasci A, Buiatti M. Characterisation of 3′ transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Mol Biol. 2008 Jun;67(3):271-81. doi: 10.1007/s11103-008-9315-7. PubMed PMID: 18306044. Impact Factor: 3.518

  84. Sakamoto Y, Tada Y, Fukumori N, Tayama K, Ando H, Takahashi H, Kubo Y, Nagasawa A, Yano N, Yuzawa K, Ogata A, Kamimura H. [A 52-week feeding study of genetically modified soybeans in F344 rats]. Shokuhin Eiseigaku Zasshi. 2007 Jun;48(3):41-50. Japanese. PubMed PMID: 17657996.

  85. Sakamoto Y, Tada Y, Fukumori N, Tayama K, Ando H, Takahashi H, Kubo Y, Nagasawa A, Yano N, Yuzawa K, Ogata A. [A 104-week feeding study of genetically modified soybeans in F344 rats]. Shokuhin Eiseigaku Zasshi. 2008 Aug;49(4):272-82. Japanese. PubMed PMID: 18787312.

  86. Sarkar B, Patra AK, Purakayastha TJ, Megharaj M. Assessment of biological and biochemical indicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment. Environ Monit Assess. 2009 Sep;156(1-4):595-604. doi: 10.1007/s10661-008-0508-y. Epub 2008 Aug 22. PubMed PMID: 18720017. Impact Factor: 1.592.

  87. Schnell J, Labbé H, Kovinich N, Manabe Y, Miki B. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res. 2012 Dec;21(6):1255-64. doi: 10.1007/s11248-012-9597-z. Epub 2012 Mar 21. PubMed PMID: 22430369. Impact factor: 2.609.

  88. Schrøder M, Poulsen M, Wilcks A, Kroghsbo S, Miller A, Frenzel T, Danier J, Rychlik M, Emami K, Gatehouse A, Shu Q, Engel KH, Altosaar I, Knudsen I. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food Chem Toxicol. 2007 Mar;45(3):339-49. Epub 2006 Sep 8. PubMed PMID: 17050059. Impact Factor: 3.010.

  89. Shelton AM, Zhao JZ, Roush RT. Economic, ecological, food safety, and social consequences of the deployment of bt transgenic plants. Annu Rev Entomol. 2002;47:845-81. Review. PubMed PMID: 11729093. Impact Factor: 13.589.

  90. Shepherd LV, McNicol JW, Razzo R, Taylor MA, Davies HV. Assessing the potential for unintended effects in genetically modified potatoes perturbed in metabolic and developmental processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res. 2006 Aug;15(4):409-25. PubMed PMID: 16906442. Impact factor: 2.609.

  91. Sinagawa-García SR, Rascón-Cruz Q, Valdez-Ortiz A, Medina-Godoy S, Escobar-Gutiérrez A, Paredes-López O. Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin. J Agric Food Chem. 2004 May 5;52(9):2709-14. PubMed PMID: 15113180. Impact Factor: 2.906.

  92. Snell C, Bernheim A, Bergé JB, Kuntz M, Pascal G, Paris A, Ricroch AE. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxicol. 2012 Mar;50(3-4):1134-48. doi: 10.1016/j.fct.2011.11.048. Epub 2011 Dec 3. Review. PubMed PMID: 22155268. Impact Factor: 3.010.

  93. Sten E, Skov PS, Andersen SB, Torp AM, Olesen A, Bindslev-Jensen U, Poulsen LK, Bindslev-Jensen C. A comparative study of the allergenic potency of wild-type and glyphosate-tolerant gene-modified soybean cultivars. APMIS. 2004 Jan;112(1):21-8. PubMed PMID: 14961970. Impact Factor: 2.068

  94. Tang M, Xie T, Cheng W, Qian L, Yang S, Yang D, Cui W, Li K. A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Transgenic Res. 2012 Jun;21(3):499-510. doi: 10.1007/s11248-011-9550-6. Epub 2011 Sep 11. Erratum in: Transgenic Res. 2012 Aug;21(4):927. PubMed PMID: 21910016. Impact Factor: 2.609.

  95. Taylor J, King RD, Altmann T, Fiehn O. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics. 2002;18 Suppl 2:S241-8. PubMed PMID: 12386008. Impact Factor: 3.024

  96. Tian JC, Chen Y, Li ZL, Li K, Chen M, Peng YF, Hu C, Shelton AM, Ye GY. Transgenic Cry1Ab rice does not impact ecological fitness and predation of a generalist spider. PLoS One. 2012;7(4):e35164. doi: 10.1371/journal.pone.0035164. Epub 2012 Apr 12. PubMed PMID: 22511982; PubMed Central PMCID: PMC3325204. Impact Factor: 3.730.

  97. Thigpen JE, Setchell KD, Saunders HE, Haseman JK, Grant MG, Forsythe DB. Selecting the appropriate rodent diet for endocrine disruptor research and testing studies. ILAR J. 2004;45(4):401-16. Review. PubMed PMID: 15454679. Impact Factor: 1.582

  98. Tony MA, Butschke A, Broll H, Grohmann L, Zagon J, Halle I, Dänicke S, Schauzu M, Hafez HM, Flachowsky G. Safety assessment of Bt 176 maize in broiler nutrition: degradation of maize-DNA and its metabolic fate. Arch Tierernahr. 2003 Aug;57(4):235-52. PubMed PMID: 14533864.

  99. Venneria E, Fanasca S, Monastra G, Finotti E, Ambra R, Azzini E, Durazzo A, Foddai MS, Maiani G. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops. J Agric Food Chem. 2008 Oct 8;56(19):9206-14. doi: 10.1021/jf8010992. Epub 2008 Sep 10. PubMed PMID: 18781763. Impact Factor: 2.906

  100. Vogler U, Rott AS, Gessler C, Dorn S. Terpene-mediated parasitoid host location behavior on transgenic and classically bred apple genotypes. J Agric Food Chem. 2009 Aug 12;57(15):6630-5. doi: 10.1021/jf901024y. PubMed PMID: 19722568. Impact Factor: 2.906.

  101. von Burg S, van Veen FJ, Álvarez-Alfageme F, Romeis J. Aphid-parasitoid community structure on genetically modified wheat. Biol Lett. 2011 Jun 23;7(3):387-91. doi: 10.1098/rsbl.2010.1147. Epub 2011 Jan 19. PubMed PMID: 21247941; PubMed Central PMCID: PMC3097882. Impact Factor: 3.348.

  102. Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terakawa T, Miyagawa H.High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot. 2006;57(12):3069-78. Epub 2006 Aug 14. PubMed PMID: 16908506. Impact Factor: 5.242.

  103. Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Gelencsér E, Jánosi A, Epstein MM, Ross RP, Lawlor PG. Fate of transgenic DNA from orally administered Bt MON810 maize and effects on immune response and growth in pigs. PLoS One. 2011;6(11):e27177. doi: 10.1371/journal.pone.0027177. Epub 2011 Nov 23. PubMed PMID: 22132091; PubMed Central PMCID: PMC3223173. Impact Factor: 3.730.

  104. Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Ross RP, Cassidy JP, Lawlor PG. Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs. Br J Nutr. 2012 Feb;107(3):364-71. doi: 10.1017/S0007114511003011. Impact Factor: 3.302.

  105. Weekes R, Allnutt T, Boffey C, Morgan S, Bilton M, Daniels R, Henry C. A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res. 2007 Apr;16(2):203-11. Epub 2006 Nov 11. Erratum in: Transgenic Res. 2008 Jun;17(3):477-8. PubMed PMID: 17115253. Impact Factor: 2.906.

  106. Wiedemann S, Gürtler P, Albrecht C. Effect of feeding cows genetically modified maize on the bacterial community in the bovine rumen. Appl Environ Microbiol. 2007 Dec;73(24):8012-7. Epub 2007 Oct 12. PubMed PMID: 17933942; PubMed Central PMCID: PMC2168158. Impact Factor: 3.678.

  107. Yuan Y, Xu W, Luo Y, Liu H, Lu J, Su C, Huang K. Effects of genetically modified T2A-1 rice on faecal microflora of rats during 90 day supplementation. J Sci Food Agric. 2011 Aug 30;91(11):2066-72. doi: 10.1002/jsfa.4421. Epub 2011 Apr 26. PubMed PMID: 21520451. Impact Factor: 1.759.

  108. Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B. Transgene x environment interactions in genetically modified wheat. PLoS One. 2010 Jul 12;5(7):e11405. doi: 10.1371/journal.pone.0011405. PubMed PMID: 20635001; PubMed Central PMCID: PMC2902502. Impact Factor: 3.730.

  109. Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z, Chan KM, Zhang H, Qi J, Ji L, Hong Y. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res. 2008 Apr;17(2):293-306. Epub 2007 Jun 5. PubMed PMID: 17549600. Impact Factor: 2.906

  110. Zhu Y, Li D, Wang F, Yin J, Jin H. Nutritional assessment and fate of DNA of soybean meal from roundup ready or conventional soybeans using rats. Arch Anim Nutr. 2004 Aug;58(4):295-310. PubMed PMID: 15570744. Impact Factor: 1.095.

  111. Zolla L, Rinalducci S, Antonioli P, Righetti PG. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. J Proteome Res. 2008 May;7(5):1850-61. doi: 10.1021/pr0705082. Epub 2008 Apr 5. PubMed PMID: 18393457. Impact Factor: 5.056

  112. Zywicki B, Catchpole G, Draper J, Fiehn O. Comparison of rapid liquid chromatography-electrospray ionization-tandem mass spectrometry methods for determination of glycoalkaloids in transgenic field-grown potatoes. Anal Biochem. 2005 Jan 15;336(2):178-86. PubMed PMID: 15620882. Impact Factor: 2.582.Biotechnol Biochem. 63:1942-6.


#GMOandscience #GMOcropssafe #GMOsarentbad #GMcropsaresafe #antigmocranks #areGMOsbad #gmos #gmolabeling #GMOskeptic #AntiGMOisjunkscience

Recent Posts

See All